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R E G U L A R  S U B M O D E L S  OF T Y P E S  (1,2) AND (1,1) 

OF T H E  E Q U A T I O N S  OF GAS D Y N A M I C S  

A. P. Chupakhin UDC 532.532 

Partially invariant solutions of types (1,2) and (1,1) for gas-dynamic equations are regularly 
divided into two classes: for the first class, the invariant independent variable is the time, 
i.e., this class contains barochronic solutions, and for the second class, the invariant variable 
necessarily depends on spatial coordinates. The barochronic submodel of gas-dynamic equations, 
as well as a passive subsystem for solutions of the second class, is integrated in finite form. 
In the latter case, the invariant subsystem is reduced to an ordinary differential equation and 
quadratures. Integration of the submodels is illustrated by a number of examples. The following 
common properties of barochronic gas flows are described: rectilinear trajectories of gas particles, 
the possibility of collapse of density on a manifold, and stratification of the space of events. 

I n t roduc t i on .  Partially invariant solutions (PIS) [1] have been widely used in different fields of 
mechanics and mathematical physics. They are a more general object compared to invariant solutions, but 
search for them involves great difficulties. It is possible to distinguish a class of regular partially invariant 
solutions (RPIS) [2], which, having the generality of PIS, can be described fairly simply. In [3], all 100 
representatives of RPIS for the equations of gas dynamics (EGD) with an arbitrary equation of state are 
listed and individual classes of RPIS are described. Twelve RPIS of type (2,1) are described in [4]. The 
interesting and informative class, of barochronic solutions of the EGD is dealt with in [5, 6]. 

In the present paper, we consider the general method of studying RPIS of types (1,2) and (1,1) using 
particular examples. Since a detailed description of these solutions is cumbersome, it will be given elsewhere. 
The analytical description of R.PIS for the EGD with the equation of state of a general form is thus completed. 

1. C o m m o n  P r o p e r t i e s  of  B a r o c h r o n i c  Solut ions.  Solutions of EGD for which the pressure is 
a function of only time [p = p(t)] are called barochronic [3]. Barochronic solutions for which density is also 
a function of only time [p = p(t)] are RPIS of type (1,3). They correspond to isentropic gas flows. Special 
barochronic RPIS are solutions of types (1,2) and (1,1), and in the case of invariant solutions, they are of 
type (1,0). 

Barochronic solutions describe inertial gas flows, which are analogs of elementary mechanical motion. 
They are of great interest as a source of nontrivial mathematical problems combining the theory of mapping, 
geometry, and algebra. At the same time, the physics of the phenomena described by these solutions is 
informative and rather complex. Thus, for example, studies of the existence and behavior of the general 
solution for a continuous medium without pressure leads to measure-valued solutions [7, 8]. 

Solutions of the EGD for barochronic motion can be generally written as finite formulas [5, 6]. The 
general solution formulas specify the velocity components u as implicit functions of all independent variables t 
and ~, and they contain arbitrary functions, whose number depends on the algebraic structure of the Jacobian 
matrix J = Ou/O~c. Density is obtained explicitly as a rational function of time. 
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For barochronic motion, the initial velocity field u0 = u0(x) has a special form: the algebraic invariants 
of its Jacobian matrix J0 = Ouo/Ox are constant numbers. A detailed description of such vector fields of 
arbi trary dimension is given in terms of the systems defining u0 as an implicit function. 

The solution u = u (x ,  t) is derived from the initial field u0 --- u0(x) by a simple substitution. 
The approach based on the special properties of the matrix J can also be used to integrate the other 

classes of RPIS. In this case, the determining factor is that  the eigenvalues J depend on just one invariant 
independent variable. This approach is demonstrated below for two submodels. 

Barochronic gas flows have the following common properties: 
1. The trajectories of gas particles in barochronic motion are straight lines. Each particle moves in a 

straight line whose position in space and velocity are determined by the initial data. 
2. For all cases of three-dimensional barochronic motion and for some cases of two-dimensional 

barochronic motion, the solution formulas describe the collapse of density at the final time: at t = t .  and 
p = c~ on a certain manifold, whose dimension is lower than the dimension of the motion (surface, line, and 
point). 

The behavior of the gas near the manifold of the collapse and the continuation of the solution behind 
the collapse have not been adequately studied. 

3. The space of events is separated into strata-manifolds, which are mapped onto the collapse manifold 
in an irregular manner (with decrease in dimension). 

These properties are derived from the general solution formulas for barochronic motion [5]. We illustrate 
them by two examples, which also show the greater generality of PIS compared to invariant solutions of the 
same rank: they are determined with functional arbitrariness. 

E x a m p l e  1. An invariant [type (1,0)] barochronic solution with respect to the subalgebra L3 = 
{tOy + O~, tOz + Ow, tO, + Ou + k(yOz - zO~ + vow - wO, ) } , where k is a real parameter, is specified by the 
formulas 

x y + b cos ~O z + b sin ~o kx po 
u = - w = qo = p = - -  Po, b =cons t .  (1.1) 

t '  v = t ' t ' - 7 - '  t 3' 

The equations of trajectories have the form 

x = t ~ ,  y = t r / + ( t - 1 ) b c o s k ~ ,  z = t ~ + ( t - 1 ) b s i n k ~ ,  

where (x, y, z) t=l = (~' r/, ~). 
Collapse of density occurs at t .  = 0 in the plane x = 0, and the particles come to the circle 

y2 + z 2 = b 2 (1.2) 

in this plane. Particles from the planes ~ =cons t  arrive at each point (y, z) of the circle (1.2), and for ~ = ~0 
and ~ = ~0 + 2n~r/k (n = 1, 2 , . . . ) ,  they arrive at the same point (y, z). 

E x a m p l e  2. RPIS of type  (1,1) with respect to the subalgebra L4 = {Oz, fox + Ou, toy + Or, tOz + Ow} 
have the form 

Cx + U(y/t ,  z / t )  y z p0 C, p0 = coast, (1.3) 
u =  l + C ( t - 1 )  ' v = T ,  w =  ~-, p =  t 2 ( l + C ( t _ l ) ) ,  

where U is an arbitrary function of its arguments. Collapse of density occurs at t ,  = 1 - C -1 on the surface 
in ]R3(x) given by the equation 

+ u ( y / t , ,  z / t , )  = o. (1.4) 

Since U is an arbitrary function, Eq. (1.4) specifies a surface of a rather general form. 
As noted above, solutions (1.1) and (1.3) are isentropic: S = So = coast, and the pressure is determined 

from the equation of state p = F(p) with an arbitrary function F. 
2. E x a m p l e  o f  a B a r o c h r o n i c  So lu t ion  o f  T y p e  (1,2). We consider the submodel generated by 

the subalgebra L5 = {0 u, Oz, tOz + Ou, toy + Or, Ox + tOz + 0t0}. It has the invariants t, w + tu - x, p, and p 
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and the superfluous functions u and v. The solution is written as 

u = u ( t ,  ~ ) ,  v = v(~, ~), w = x - t u .  

The solution constructed from the initial data at t = 0 has the form 

uo = u0(z), v0 = v0(a~), w0 = x. (2.1) 

The case t0 r 0 is reduced to (2.1) by substitution of the independent variables and velocities (the remaining 
variables remain unchanged): 

Z = z + t o x ,  W = w + tou. (2.2) 

Substitution (2.2) conserves the invariants of the matrix J0. 
The Jacobian matrix of the initial data (2.1) J0 = Ouo/Oz has the invariants 

h0 = u0~ + v0~, k0 = u0zv0~ - uoyvoz - uoz, mo = uoyvoz - uozvoy. (2.3) 

System (2.3) is linearized by substitution of variables similarly to the canonical system for two-dimensional 
barochronic motion [3]. In contrast to the latter, which contains two functions of two independent variables, 
system (2.3) contains three equations for the two functions (u0, v0) of the three variables ( x , y ,  z) and is 
overdetermined. 

We use (z, z, u0) as the new independent variables and (y, v0) as the new functions, so that  

y = Y ( z ,  z, u0), v0 = V(x ,  z, u0), Y"0 r 0. (2.4) 

Differentiating expressions (2.4) over the variables (x, y, z), we obtain the following formulas for conservation 
of derivatives: 

Yx 1 Yz Vuo Yx V~ o V~~ Yz (2.5) 
~,o~ = - V . '  uoy = Y,,o' ~,o~ = F.,~',,o ,~o~ = v= Y,,o ' ,,o~, : V s  ~ , vo~ = v~ Y,,o 

After substitution of expressions (2.5) into system (2.3), we obtain the following linear system for the functions 
Y and V: 

V,o - Y~ = hoY,,o, - V x  + Y ,  = koYuo, V, = m o Y ,  o. (2.6) 

Cross differentiation eliminates the function V and yields an overdetermined system of three linear second- 
order equations for the function Y. It can be solved for three (of six) derivatives of Y to yield compatibility 
conditions of the next order. This cumbersome process can be eliminated by appropriate selection of new 
variables. 

Let the matrix J0 have three different real eigenvalues Ak0 (k = 1, 2, 3). The remaining cases are 
examined similarly. 

We introduce new independent variables: 

a = U 0 - -  (A10 "k" /~20)Z + ) q 0 A 2 0 Z ,  f l  ---- U0 - -  ()~10 -F A30)x  + )q0)~30 z ,  (2.7) 

7 = u0 - (,~20 + ~a0)z + ,~20~30z. 

The Jacobian of the transformation from the variables (u0, x, z) to the variables ((~,/3, 7) is different 
from zero by virtue of the condition ~i0 r )~j0 for i ~ j: 

/ , ,  = a(a, #, 7) 
- -  (~10 - -  )~20)(~10 - -  )t30)()~20 - -  )~30) # O. 

O(uo, z ,~ )  

We also introduce new functions: 

P = V - Aa0Y, Q = V - X20Y, R = V - A10Y. (2.8) 

These functions are not independent. The condition of their linear dependence will be used below. 
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In the new variables (2.7) and (2.8), system (2.6) becomes 

Ptr + Q~ + R 7 = 0, ()qo + )~20)Pa + ()q0 + )~3o)Q~ + ()~2o + ~30)R7 = 0, 
(2.9) 

AlOA2oPa + ~lOA3OQB + A2o~3oR7 = 0. 

The discriminant of system (2.9), which is treated as a system of linear homogeneous algebraic equations 
for the  variables Pa, Q~, and R.~, is equal to A # 0. Hence, system (2.9) has only the trivial solution 
P~, = Q a = R' t  = O. 

Thus,  according to the definition (2.8) of the quanti t ies P,  Q, and R, we have 

Y - X30Y = ~01(/3,7), V - X20Y = r V - Aa0Y = r (2.10) 

The functions P,  Q, and R, and, hence, function (2.10) are related by one linear relation resulting from (2.8): 

(A10 -- A20)~1(/3, 7)  + (A30 -- A10)~02(O~, 7)  + (A20 -- A30)~03(O~,/3) = 0. (2.11) 

We differentiate Eq. (2.11) with respect to 7 and/3. Then  we repeat this procedure twice, performing cyclic 
permuta t ion  of variables. As a result, we have 

02~o~ 02~2 02~o3 

0 / 3 0 7  - = 0 a 0 / 3  = 0 .  

Thus,  

~,  = ~I(/3) + ~P2(7), ~2 = ~ ( a )  + ~o2(7), ~3 = ~ ( a )  + ~2(/3). (2.12) 

We subst i tu te  (2.12) into Eq. (2.11) and find that  the sum of the three functions, each of which depends on 
its argument ,  is equal to zero. Hence, the variables are separated, and the functions ~ (i, j = 1, 2, 3) are 
related by 

(A30 - Alo)~o21(a) + (A20 - A30)qo](a) = b - a ,  

(Alo - A20)~o~(/3) + (A20 - A30)qo2(fl) = a - c, (2.13) 

( 3o- c - b ,  

where a, b, and c are arbitrary numbers ("constants of separation"). 
We revert to system (2.10). We separate from it the  functions Y and V. For this, we obtain two linearly 

independent  equations from (2.10). The  first of them is the  sum of Eqs. (2.10), and the second is their linear 
combination: in (2.10), the first equation is multiplied by ~2o, the second by ~10, and the third by A3o. Then 
the required system becomes 

3 V  - h o Y  = ~oa + qo2 + qo3, h o V  - k o Y  = A20qox + A10~o2 + )~30~3. (2.14) 

Here h0 and/co are the first and second invariants of the matr ix J0. We consider the regular case where the 
discriminant of system (2.14) is d = h02 - 3ko # 0. Since the functions qok are arbitrary, the discriminant is 
assumed to be equal to unity, and qok is replaced by the new functions d-l~ok. 

Under this condition, the solutions of system (2.14) have the form 

Y = (2A20 - -  )~10 - -  A30)~Ol  -1 t- (2A10 -- A20 - -  )~30)~92 + (2A30 -- A10 - -  ) t 2 0 ) ~ 0 3 ,  (2.15a) 

V = ()~22o - ,~10/~30)~91 -3 t- ( ~ 0  - )k20"~30)~02 + (zk320 - ~10)~2o)~ 3. (2.15b) 

On the right side of formulas (2.15), we separate terms tha t  depend only on the arguments a, /3, and 7, 
respectively. 

Let us show that  solution (2.15) depends only on three  functions, each of which depends on its argument.  
For this, we use relations (2.13) and the fact that,  in view of the homogeneity of the initial system (2.6), its 
solutions Y and V (2.15) are determined with accuracy up to additive constants. 

In formula (2.15a), we separate the term that  depends only on a: 

(2 10 - - + (2 3o - - 
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= ( 10 - + ( A 3 0  - - [( 30 - + ( 20 - ( 2 . 1 6 )  

By virtue of the first equation of (2.13), the expression in square brackets in (2.16) is equal to the constant 
number  b -  a and, hence, without loss of generality, it can be omitted in the solution formula. Thus, in formula 
(2.15a), the term depending on a has the form 

f l(a) = (Al0 - A20)~o21(a) + (A30 - A10)~(a).  (2.17) 

In formula (2.15b), we separate the solution component  that  depends only on a and divide it into two terms: 

(A~0 - A20A30):~(a) + (A]0 - Aa0A20):~(a) = A3[(Aa0 - A20):~(a) + (A30 - A~0):~(a)] 

- ~1[(~0 - ~ 0 ) ~ ( ~ ) +  (~20 - ~ 0 ) ~ ( ~ ) 1  = ~ 0 f x ( ~ ) -  A10(b- a). (2.18) 

Here the last equality is valid by virtue of (2.17) and the first equation of (2.13). Since Y and V are determined 
with accuracy up to additive constants, the constant  te rm in (2.18) can be dropped. 

Similar formulas hold for the solution components  V and Y, which depend only on/~ and 7- Thus, the 
following lemma is valid. 

L e m m a .  The general solution of system (2.16) has the form 

Y = f l ( a )  + f2(fl) + f3(7), Y = A3ofl(a) + A20f2(D) + A10f3(7), (2.19) 

where fi (i = 1, 2, 3) are arbitrary functions of their arguments. 
The velocity components (u, v, w) as functions of all the variable are obtained from (2.4) by substi tuting 

expressions (2.19) into the right sides, erasing zeros at u0 and v0, and substi tuting z ---, z - t u .  The solution 
(u, v) is determined implicitly from the system obtained. 

3. S u b m o d e l s  of  N o n b a r o c h r o n i c  F o r m .  According to [2], for the EGD with an equation of state of 
general form, there are three such RPIS of type (1,2) and fourteen RPIS of type (1,1). The first are generated 
by 5- and 6-dimensional subalgebras from OLl l ,  and the second are generated by 4-dimensional subalgebras 
from @LH. All these subalgebras contain operators transforming time t. 

RPIS of this form have the invariant independent  variable A, which is a function of only the initial 
independent variables A = A(t, ~v), and VA 7t 0. The  variables p, p, and S are also invariants of the subalgebras. 
In addition, for submodels with defect/~ = 2, one velocity component is expressed in terms of invariants, and 
for submodels with 6 -- 1, two velocity components  are expressed in terms of invaxiants. The remaining 
velocity components (two or one) are superfluous functions. 

All these submodels have a common st ructure  and are integrated by a unified scheme including the 
following stages: 

Stage I. After introduction of an auxiliary function, the invariant subsystem reduces to one ordinary 
differential equation for this function. Below, it is called equation B. All invariant functions are restored 
from the solution of B by quadratures. Equation B is the equation of momenta  for the invariant velocity 
component.  For some submodels, this equation can be integrated to give the invariant component of the 
Bernoulli integral. The latter is the final relation between this component and the enthalpy of the gas. Since 
the invariant velocity component  and the enthalpy are expressed in terms of the auxiliary function and its 
derivatives, after substitution of these expressions into equation B, the latter becomes an ordinary differential 
equation for the auxiliary function. 

Stage II. The overdetermined system, or, more precisely, its passive part  is similar to the system that 
describes two-dimensional barochronic gas flows and is integrated similarly to it [3]. 

(A) We consider the present scheme for the submodel of type (1,2) generated by the subalgebra 
L5 = {Oy, O~,~O~ + O~,tOz + Ow, yO~ - zO~ + vO~ - wO~ + Or}. It has the invariants (x,u,p,p,S) and the 
superfluous functions (v, w). 

The solution has the form 

v = w = w ( t ,  I x .  
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The equations of the submodel are writ ten as 

u u '  + p - l p ,  = 0, 

vt + uv~ + vvy + wv~ = 0, 

wt + u w x  + vwy  + w w z  = 0, 

up'  + p ( u  ~ + vy + w~) = O, 

u S  I = O, 

(3.1a) 

(3.15) 
(3.1c) 

(3.1d) 

(3.1e) 

where the pr ime denotes differentiation with respect to x. According to Eq. (3.1e), for the entropy, we have 
the following two possibilities. 

1. Let u = 0. In this case, from (3.1a) we have p = p0 = const. Then, system (3.1) describes two- 
dimensional isobaric gas flows [9]. The  corresponding solution is written as 

u = 0, (3.2a) 

z = (y -- t v ) f ~ ( x ,  v)  4- f 2 ( x ,  v )  + f l  (x, v), (3.25) 

w = f l ( z , v ) ,  (3.2c) 

p = n ( z ,  v,  y - t v ) ,  (3.2d) 

S = H ( x ,  v,  y - t v ) ,  (3.2e) 

po = F(p ,  S), (3.2f) 

where f l ,  f2, R, and H are arbitrary functions of their arguments.  The last two are related by (3.2f), which is 
an isobaric equation of state. The  velocity component v is specified by relation (3.2b) as an implicit function 
of the variables (t, x, y, z). 

This solution is a double wave [9] since all required functions depend on the two Lagrangian invariants 
v and y - t v ,  which are functionally independent  for the variables (y, z) at Vz ~ O. 

2. Let u ~ 0. Then, frorri (3.1e) we have S = So = const. The submodel describes isentropic gas flow. 
We introduce the  Lagrangian variable 

= t -  fu-laz.  
Then Eqs. (3.1b)-(3.1d) become the s tandard  system 

vt + v v y  + w v z  = O, w ,  + vwy  + ww~ = O, vy + w~ = h ( x ) ,  (3.3) 

where 

h = - (u ( ln  p ) ' +  u'). (3.4) 

System (3.3) is similar to the  system describing two-dimensional barochronic gas flows [3] and is integrated 
similarly to it. The compatibili ty conditions for system (3.3) are the equations 

D h  + h 2 = 2k,  D k  + h k  = O, (3.5) 

where h -- sp J ,  k = det J ,  and D = uO, .  

We introduce the new independent  variable X = X(x):  

d X  1 
- -  - ( 3 . 6 )  
dx  u '  

fdx so that  X = u - ~ '  Then,  Eqs. (3.5) coincide with the conditions of compatibili ty of the equations of 

two-dimensional barochronic motion (X .plays the role of t). 
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As is known [6], Eqs. (3.5) have the general solution 

h = Q,x /Q,  

k = Q x x / 2 Q ,  

where Q = 1 + hoX + koX  2, ho, and k0 = const. 

(3.7a) 
(3.7b) 

The  eigenvalues Ak = ,kk(x) (k = 1) of the matr ix  J satisfy the equations AkX + ,k~ = 0 (k = 1, 2), 
which have the  solutions 

/~k0 
'~k-- I + A k 0 X  ()~k0=const ,  k = l ,  2). (3.8) 

In this case, A1 +A2 = h, )~lA2 = k and A10+A20 = ho, ,kloA2o = k0. Depending on the sign of the discriminant 
do = h2o/4 - ko, we have the corresponding representation of the solution of system (3.3) [5]. 

Thus,  if do > 0, the matr ix J0 has two different real eigenvalues. In this case, the functions 
(v, w) (t, X, y, z) are determined implicitly from the system 

) Fk y - -  A k v , z - -  -- = = - -  -~-~kw, t X 0 (k i, 2) (3.9) 

for arbitrary functions Fk, such that  their gradients for the  first couple of variables are linearly independent.  
This condition guarantees local resolvability of system (3.9) for (v and w). Since Eqs. (3.9) can be solved for 
one of the  arguments,  the solution obtained depends on two arbitrary functions of two variables. 

The  remaining invariant subsystem, containing Eqs. (3.1a), (3.4), and (3.5) [or (3.7)], is reduced to 
equation B (3.1a) and quadratures. The  continuity equation (3.4) in terms of the variable X is integrated in 
explicit form. Indeed, 

u(ln p)x dln p 1 du dln u 
= dX  ' u ~ -  - - -  u d X  d X  

Substi tut ing these expressions and representation (3.7a) for h into (3.4) and integrating, we obtain p = Ro/uQ,  
where R0 = const. Changing the roles of the dependent and independent variables, i.e., setting x = x(X) ,  we 
obtain the  following explicit formula for density: 

R0 
P = (1 + hoX q- k o X 2 ) x x "  (3.10) 

Thus, all required functions are represented as functions of the variables (t, X, y, z). The component u is 
determined from (3.6), (v ,w)  is determined from (3.9), and p from (3.10). 

To obtain the final solution, it remains to find the function x = x ( X ) .  It satisfies the equation of 
momenta  (3.1a), which is integrated once to take the form of the invariant component  of the Bernoulli 
integral 

l u  + I(p) = b0, b0 = const, (3.11) 

where the  enthalpy is l (p)  = [ p - l d p .  Equation B (3.11) into which u from (3.6) and p from (3.10) a r e  

substi tuted is an ordinary differential first-order equation for the function x = x ( X ) .  
We write it in expanded form for a gas with a polytropic equation of state p = p7: 

(1 + h o X  + ]r q'l - 2b0x~- -1) -{- ~ ~- 0, (3.12) 

where ze = 27Rg - 1 / ( 3 ' - 1 )  = const. For some values of 7, Eq. (3.12) can be integrated in elementary functions. 
(B) We describe integration of the equations of the submodel of type (1,1) generated by the subalgebra 

L4 = { Oy, Oz, yaz - zOy + vow - wOv, tcOz + Ou + Or}. For this, it is convenient to introduce polar coordinates 
in the hodograph plane (v,w): v = q cosqo and w = qsinqo. 
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The subalgebra has the invariants A -- x - t2/2, u - t, q, p, S, and p and the superfluous function ~2. 
The solution has the form 

u = t + U ( A ) ,  v = q ( A ) c o s ~ ,  w = q ( A ) s i n ~ ,  (p,S,p) A, ~ = ~ ( t , x , y , z ) .  

The submodel is defined by the equations 

UU' + 1 + p-lp, = 0, (3.13a) 

~t + U ~  + q(~y cos ~ + ~z sin ~) = 0, (3.13b) 

Uq' = 0, (3.13c) 

Up' + p(U' + q ( - ~ y  sin r + ~z cos ~)) = 0, (3.13d) 

US' = 0, (3.13e) 

where the prime denotes differentiation with respect to A. 
1. Let U = 0. Then, system (3.13) is reduced to a standard system similar to the system for helical 

barochronic gas flows with zero divergence. It is integrated to take the finite form u = t, v = qcos~2, 
w = qsin ~, (p, S,p) I A, where the functions p, S, and p satisfy the equation of state p = F(p, S) and the 
relation p~ + p = 0. The function q = q(A) is arbitrary, and the function ~ = ~(t,  A, y, z) is defined implicitly 
by the equation y cos ~ + z sin ~ = f (A,  ~) + tq for an arbitrary function f of its arguments. 

2. Let U # 0. From (3.13e) it follows that S = So = const, and the submodel describes isentropic gas 
flows. From Eq. (3.13c) it follows that q = q0 = const. 

We introduce the Lagrangian variable ~ = t - [  U -1 d$. Then Eqs. (3.13b) and (3.13d) form a standard 

system similar to the system describing helical barochronic flows: 

~t + q0 (~o~ cos ~2 + ~Oz sin ~o) = 0, - ~ y  sin ~o + ~o~ cos ~o = h/qo, (3.14) 

where 

h = - [U( lnp) '  + U']. (3.15) 

The compatibility conditions for system (3.14) have the form 

Uh ~ + h 2 = O. (3.16) 

(a) Let h ~ const. We introduce the function a = a()t), so that a = 1/h. Then, (3.16) leads to the 
representation 

1 1 
U = - -  h = - .  (3.17) 

O "! ' 0"  

The continuity equation (3.15) with allowance for (3.17) is integrated in finite form. We obtain the following 
representation for the solution: 

u = t + l / a  t, v=q0cos~o,  w=q0sin~o,  p = Roa'/a,  S = So, p = F(p), (3.18) 

where q0, R0, and So = const. The function ~ = ~0(t,)~,y,z) in (3.18) is defined implicitly by the relation 
r  - q0a cos~o, z - q0asin ~) = 0 for an arbitrary function ~. 

The auxiliary function a = a(A) is found from equation B, which is the invariant component of the 
Bernoulli integral and is obtained by integration of the equation of momenta  (3.13a): 

U + + I(p) = bo, bo = A const. (3.19) 

Into Eq. (3.19) one should substitute expressions (3.17) of U and p in terms of a and a'. For a gas with a 
polytropic equation of state p - p~ Eq. (3.19) has the form 

zea Iz+l + 2(A - bo)a~-la 12 + a "r =- O, 
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where ae = 2"~R~-1/(3 , - 1) -- const. 
(b) Let h = h0 = const. Then, from Eq. (3.16) it follows that h0 = 0. In this case, the functions 

U = g(~) and p -- p(~) are determined from the consumption and Bernoulli integrals: 

pU = Qo, 1U2 + )~ + I(p) = bo, bo = const. (3.20) 

The function ~ = ~0(~, ~, y, z) is found implicitly from the equation y cos ~ + z sin ~o = f(~, ~) + tqo with an 
arbitrary function f of its arguments. The variable ~ is determined from the U = U(~) obtained from (3.20). 
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